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spatial and national spillovers in construction. Although the government does not engage
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to contractors. Contractors are hypothesized to use housing-under-construction as a buffer
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investigate the determinants of regional housing construction. Because the spatial panel
data are nonstationary, we use spatial panel cointegration methods to estimate the model.
The estimated model is used to calculate impulse responses which propagate over time and
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‘‘Virtually every paper written on housing supply begins
with the same sentence: While there is an extensive litera-
ture on the demand for housing, far less has been written
about supply.’’ DiPasquale (1999)
1. Introduction

As noted by DiPasquale and many others, the empirical
determination of house prices has attracted much more
attention than the determination of housing construction.
This continues to be so even now. This asymmetry is
puzzling because house prices vary inversely with the
stock of housing (Smith, 1969; DiPasquale and Wheaton,
1994, Bar Nathan et al., 1998). Therefore a complete
account of house price behavior requires analysis of both
sides of the housing market, the demand for housing and
its supply.
The extant research on housing construction has been
largely concerned with national housing construction
(Ball et al., 2010). In this paper, we focus on the determi-
nants of regional housing construction. Our motivation
stems from a variety of reasons. First, regional house prices
and construction vary considerably and systematically.
Therefore, national housing parameters might not be rele-
vant to specific regions. Second, national aggregation of
regional housing markets might be inappropriate. Indeed,
it is possible to reject a hypothesis nationally due to aggre-
gation bias, when the hypothesis is valid regionally. Third,
since regional panel data are inevitably more informative
than their national counterparts, it is easier to test hypoth-
eses using regional panel data than national data. Fourth,
national models of housing supply do a poor job in captur-
ing the unique local and regional factors that bear upon
supply. Finally, to our best knowledge there is no pub-
lished research on regional housing construction.

Attention has recently been drawn to local phenomena
such as topography, zoning and building regulations in the
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determination of housing construction (Meen and Nygaard,
2011; Saiz, 2010; Paciorek, 2011). The price elasticity of sup-
ply of new housing is expected to vary inversely with the
degree of inflexibility in zoning and land use policy as well
as with topographical difficulties that raise the cost of con-
struction. Since these parameters are quintessentially local,
it makes more sense to estimate local or regional models
rather than national models, which ignore local heterogeneity.
In our empirical application for Israel the key local phenome-
non of interest is the supply of land rather than topography
and building regulation since the latter is set nationally, while
the former is captured by regional specific effects.

Regional models are not simply national models applied
regionally. This is because regional housing markets are
not independent islands. Construction is unlikely to be
independent, especially if building contractors operate
across locations. Building contractors may choose to oper-
ate in locations where profits are higher, or they may have
local preferences so that construction in one location is not
a perfect substitute for construction in another. We there-
fore distinguish between absolute and relative profitability
in housing construction. An absolute increase in profitabil-
ity in a location is hypothesized to increase construction
locally. However, an increase in profitability in another
location will reduce relative profitability. If construction
in different locations are gross substitutes, this will reduce
construction locally. On the other hand, if they are gross
complements the opposite will apply. Gross complemen-
tarity may be induced, for example, by scale economies
in which local building costs are affected by construction
in other locations, and by advances in building technology,
which encourage multi-location operations. In addition, if
construction is credit constrained, this constraint may be
eased when construction increases in other locations.

We distinguish between neighboring locations and
other locations since for logistical reasons construction in
the former might be related differently to construction
between more remote locations. In practice we use spatial
econometric methods to estimate spillover effects between
neighboring locations, while the latter are specified at the
national level. Therefore, our main contribution is to test
hypotheses about housing construction using dependent
regional panel data.

A second contribution is methodological. Since the data
are nonstationary we use the methodology of panel cointe-
gration to test hypotheses regarding the determination of
housing construction. Standard panel cointegration tests
(Pedroni, 2004) assume that the panel units are indepen-
dent, which in the present context means that unobserved
heterogeneity is regionally independent. There have been a
number of attempts to introduce strong cross-section
dependence into panel cointegration tests e.g. Banerjee
and Carrion-i-Silvestre (2011). We extend Pedroni’s panel
cointegration test statistics to the case in which the units
in the panel are spatially dependent and the cross-section
dependence is therefore weak.1 This is the first study of
1 Studies in housing supply (Saiz, 2010; Paciorek, 2011) typically ignore
nonstationarity. For an exception see Mayer and Somerville (2000a). Also,
most studies including those mentioned, assume that the panel units are
spatially independent.
housing supply which takes account of both nonstationarity
and spatial dependence in the panel data.

We show that when the number of panel units is fixed,
as it is in spatial data, demand and supply schedules are
identified without recourse to instrumental variables.
Potential simultaneous equations bias that would arise in
stationary data tends to vanish asymptotically when the
data are nonstationary and when the model is panel-
cointegrated. This convenient feature results from the
super-consistent property of OLS estimates of cointegrat-
ing vectors. We are thus able to obtain consistent estimates
of the supply schedule for housing without taking into con-
sideration how the demand for housing is determined. The
same principles enable the consistent estimation of spatial
spillovers without recourse to ML or IV as would be
required had the data been stationary.

We use regional panel data for Israel to test the model
and to estimate spatial and national spillovers in housing
construction. In previous work (Beenstock and
Felsenstein, 2010) on regional house prices we found that
standard panel cointegration methods led to the rejection
of the null hypothesis. However, spatial panel cointegra-
tion methods overturned this result. In the present paper
we start by estimating a standard, non-spatial housing
starts regression. Using spatial panel data we then test
whether housing construction models are miss-specified
if they omit spatial spillovers in housing construction.
We also highlight the effect of spatial factors in the esti-
mates of elasticity of supply for housing.
2. Theory and methodology

2.1. The price elasticity of supply of housing construction

The price elasticity of supply of new housing is made up
of two key components. First, if house prices increase (rel-
ative to building costs) contractors have a greater incentive
to build on land that is already available for housing. Mar-
ginal plots that were previously empty will be built upon
and the housing stock will increase. Also, contractors will
build more intensively (high rise) if building costs vary
directly with the number of floors. Furthermore, marginal
housing intended for re-designation (for offices, shops
etc) will be retained as housing since it is more profitable,
and offices and shops will be re-designated as housing. The
latter does not directly affect construction but it affects the
supply of housing.

Whereas the first component takes the designation of
land use to be fixed, the second component assumes that
land use is endogenous. If the price of housing increases,
land use will be re-designated in favor of housing, which
will increase new housing construction. This applies to pri-
vately owned land and publicly owned land. However, the
price elasticity might be greater when land is owned pri-
vately. If land use is entirely regulated the second compo-
nent will be zero because privately owned land cannot be
re-designated. Also, planning permission required to build
high-rise housing will adversely affect the elasticity of sup-
ply of new housing construction. However, planning per-
mission and zoning are unlikely to be completely
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independent of house prices. Expensive housing makes for
political unpopularity. Therefore, the second component is
unlikely to be zero.2
2.2. Models of housing construction

Two theoretical models have informed the empirical
analysis of housing construction. The first relates construc-
tion to changes in house prices and the second to the level
of house prices. The former treats housing as an asset to be
supplied to the market if there is disequilibrium, expressed
in changes in house prices (Blackley, 1999; Hwang and
Quigley, 2006). The latter treats the production of new
housing as any other product, which forms the basis of
the ‘‘stock-flow’’ model originally proposed3 by Smith
(1969). This model is essentially a dynamic capital asset
pricing model since the price of housing is determined in
the market for housing as an asset, while the flow of this
asset is determined by construction, which depends upon
the level of house prices.

The basic version of the stock-flow model consists of
two equations. The first is an inverted demand function
in which house prices are hypothesized to vary directly
with demand factors such as population and income, and
to vary inversely with supply (the housing stock), which
is quasi-fixed. The second equation determines housing
construction, which responds to house prices. Subse-
quently, the housing stock adjusts over time to its long
run level (Topel and Rosen, 1988). The construction indus-
try smooths-out investment over time, and house building
is a lengthy process protracted by institutional constraints
due to planning delays. Investors are encouraged to
smooth construction in developed sites with permits
(Mayer and Somerville, 2000b). In the stock-flow model
new housing competes with the existing housing stock.
Since the latter is much greater than the former the market
power of constructors is greatly limited. It is for this reason
that in the stock-flow model it is assumed that construc-
tors operate within a competitive environment.
2.3. Regional housing policy

The market for land in Israel may be unique in that 94%
of national land is in public ownership, and is administered
by the Israel Land Authority (ILA). The role of the ILA can-
not be understated. It auctions land to private builders,
who sell housing to the public, which hold long-term
leaseholds with the ILA. These leaseholds are nominally
for 49 years, but in practice are automatically renewed at
no cost. These arrangements give the government long-
term control over land ownership.

Housing construction in Israel is entirely undertaken by
private contractors. The government does not build houses
2 As discussed below, government tends to sell land for housing
construction when house prices are high.
3 This model dates back to Witte (1963) and has been applied in many

ountries including by Smith (1969) for Canada, Kearl (1979) for the United
tates, and Bar Nathan et al. (1998) for Israel. It also features in numerous
acroeconomic texts such as Dornbusch and Fischer (1990), Sachs and

arrain (1993) and Mankiw (2003).
directly. Nevertheless, housing construction is a major
component of the government’s regional policy. The gov-
ernment initiates housing construction in specific regions
by offering for tender building rights on land vested in
the ILA. It fixes a minimum price determined in large part
by the location of the land, and The Ministry of Housing &
Construction (MOH) encourages contractors to compete
for its tenders by defraying a fraction of the development
costs. In this way the government subsidizes construction
in regions where it wishes to initiate construction for
housing.

Given everything else, there will be more construction
in regions where MOH initiates more building (denoted
by Bg). However, such building might crowd-out private
building (denoted by Bp). Contractors who in any case
intended to build in the region might simply build MOH
projects instead of private projects. On the other hand, if
they are credit-constrained, the financial perks in MOH
contracts might enable contractors to build private hous-
ing that otherwise would not have been possible. Therefore
if MOH initiates an extra 100 housing units, total construc-
tion will increase by less than 100 if there is crowding-out
and it will increase by more than 100 if there is crowding-
in.

Unfortunately there are no systematic data4 on the sub-
sidies embodied in MOH contracts. We assume that these
subsidies vary directly with MOH-initiated housing con-
struction. Specifically, let Z = Bg/B denote the share of
MOH-initiated housing in total construction (B) in the
region, where B = Bg + Bp. If lnB = lZ (where l is a constant)
it may be shown that the coefficient of crowding-in is:

dBp

dBg
¼ lð1� ZÞ � 1

1þ Zl
ð1Þ

which varies inversely with MOH’s share in construction
(Z). If l(1 � Z) < 1 MOH-initiated housing (G) crowd-out
private construction, otherwise it crowds-in. Alternatively,
crowding-in occurs if the share of private construction
(1 � Z) exceeds 1/l.

2.4. The econometric model

We use spatial panel data to estimate the following
basic model for housing construction (B):

ln Bit ¼ ai þ g lnðPit=CitÞ þ / lnð~Pit=~CitÞ þ c lnðPt=CtÞ

þ k ln ~Bit þ lZit þ p~Zit þ uit ð2Þ

where i = 1, 2, . . ., N labels spatial units, t = 1, 2, . . ., T labels
time periods, P denotes house prices, C denotes building
costs, and tildes denote spatial lags, e.g.:

~Bi ¼
XN

j–i

wijBi ð3Þ

where wij denote exogenous spatial weights row-summed
to unity and wii = 0. Pt and Ct refer to house prices and build-
ing costs at the national level. The main hypotheses are that
4 The subsidy for each MOH tender is known, but these subsidies have
not been aggregated into an index.
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weaken with N (Baltagi 2008, p. 287).
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regional housing construction varies directly with profit-
ability in the region, hence g > 0, and it varies directly with
MOH regional incentives, hence l > 0. Eq. (2) includes three
spatial effects. First, if profitability increases among the
neighbors of region i contractors will engage in spatial sub-
stitution, hence / < 0. See Meen and Nygaard (2011) for an
example of such a spatial lag estimated from cross-section
data. Secondly, if regional incentives received by the neigh-
bors of region i induce spatial substitution in construction p
will be negative. However, if construction in region i and its
neighbors are complementary p may be positive. Third, if
there are positive spatial spillovers in construction k will
be positive. Therefore, the spatial substitution effect is /
and the spatial complementarity effect is k.

The presence of k in Eq. (2) implies that the uncondi-
tional elasticity differs from the elasticity conditional on
construction in other locations. Since each location is its
neighbors’ neighbor, construction in one location affects
construction in its vicinity, which feeds-back onto con-
struction in the original location. For example, g denotes
the conditional price elasticity of local construction
because it is conditional on ~Bi. Its unconditional counter-
part is obtained by taking account of spatial propagation
of Bi on ~Bi: If this is positive (negative), the unconditional
elasticity will be greater (less) than g when 0 < k < 1. In
any case the unconditional elasticity will vary by location
because the spatial weights (wij) vary by location. As a
result, although the conditional elasticity is the same for
each spatial unit, the unconditional elasticities are not;
they are spatially state-dependent.

Apart from these spatial effects Eq. (2) includes a
national effect (c). If local and neighboring profitability
are given, an increase in national profitability might affect
local construction in two ways. First, substitution in con-
struction may take place beyond neighboring regions,
which would make c negative. Secondly, an increase in
national profitability has a positive effect on national con-
struction. If national and local construction are comple-
ments then c may be positive. If national profitability
increases, local construction may increase despite the fact
that local profitability is unchanged.

In the ‘‘standard’’ specification of Eq. (2) there are no
spatial or national spillovers in which case /, c, k and p
are assumed to be zero, and each region is an island unto
itself. In this case the parameters of interest are g and l,
and the conditional and unconditional elasticities are iden-
tical. In Section 4 we begin by reporting results for the
standard specification and test it against alternatives with
spatial and national spillovers.

Since Eq. (2) is hypothesized to be panel cointegrated it
refers to the long-run relationship between construction
and its determinants, i.e. after all partial adjustments and
lagged responses have worked through. For example, g
denotes the long-run elasticity of construction with
respect to local profitability. In the short-run the elasticity
of construction with respect to local profitability might be
less than g. Since cointegrating vectors refer to long-run
parameter estimates (Engle and Granger, 1987) and cointe-
gration occurs when the residuals are stationary, we test
the hypothesis that the residuals (u) of Eq. (2) are panel
stationary.
This concept of ‘‘long-run’’ should not be confused with
long-run or steady-state equilibrium in the housing market
as a whole. In this steady-state housing construction
equals depreciation (Topel and Rosen, 1988) and house
prices assume their steady-state values. By contrast in
Eq. (2) house prices are what they are in the data which
do not necessarily equal their steady state values. The
long-run supply schedule, as represented by Eq. (2), may
be estimated using actual house price data rather than
steady-state house price data. To derive the steady-state
for house prices, it would be necessary to estimate the
demand for housing and not just its supply, and to use this
model to solve for steady-state housing construction and
house prices.5
2.5. Cointegration in nonstationary spatial panel data

We use the IPS (Im et al., 2003) statistic to determine
whether the panel data are nonstationary. We prefer this
test because it allows for heterogeneity in the roots of each
panel unit. Since (see below) all the variables that feature
in Eq. (2) are nonstationary but are stationary in first dif-
ferences, Eq. (2) is panel cointegrated if the residuals (u)
are stationary. If the residuals are not stationary, the
parameter estimates obtained from Eq. (2) would be spuri-
ous (Phillips and Moon 1999).

Conditions for identification when the data are non-
stationary are different to when they are stationary. In
the latter case weak exogeneity requires that the covari-
ates in Eq. (2) be independent of u. For example, identifica-
tion of g requires that house prices are independent of u. If
there is reverse causality from housing construction to
house prices g is not identified, and OLS estimates of g
would most probably be under-estimated. The same
applies to estimates of k; since the spatial lagged depen-
dent variable is positively correlated with u OLS estimates
of k are generally over-estimated (Anselin, 1988). There-
fore, if the data are stationary instrumental variables
would be required to identify these parameters.

We show in Appendix 1 that matters are different if the
data are nonstationary, provided that N is fixed,6 as it typ-
ically is in spatial panel data such as ours, so the asymptotics
depend on T alone. As T tends to infinity random variables
that are integrated to order d are asymptotically indepen-
dent of random variables that are integrated to an order less
than d. In Eq. (2) d = 1 for the covariates but d = 0 for u if Eq.
(2) is cointegrated. Therefore, the covariates in Eq. (2) are
asymptotically independent of u in which case the parame-
ter estimates are consistent; indeed they are super-consis-
tent, as demonstrated in Appendix 1. To be sure that Eq.
(2) is a supply schedule and not a demand schedule, it must
specify covariates (Zs) that are hypothesized to shift supply
but not demand. These include construction costs and ILA
land auctions, which are hypothesized to affect supply but
do not affect demand.
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Although the parameter estimates of Eq. (2) are consis-
tent, they may be biased in finite samples, as discussed in
Appendix 1. In the data T = 24 years and N = 9. We think
that the finite sample bias is likely to be negligible for sev-
eral reasons. First, what matters for cointegration is not
just the number of observations but also the passage of cal-
endar time. We most probably learn more from 24 years of
annual data than 100 monthly data points. Twenty-four
years of data should be sufficiently long to make inferences
about the long-run relationship between construction and
its determinants. Second, this long-term relationship is
observed nine times across the panel units. The inferential
value of TN = 216 observations is obviously less than 216
time series observations, but it is clearly more than 24 time
series observations. Third, finite sample bias in panel data
tends to be smaller than in time series data (Appendix 1)
because the bias tends to be diversified away across the
panel units. Fourth, as discussed in Appendix 1, finite sam-
ple bias varies inversely with the goodness-of-fit of Eq. (2),
which turns out to be high.

Because estimates of cointegrating vectors generally
have non-standard distributions hypothesis tests cannot
be carried out using t-statistics, Chi square statistics and
F statistics, which are derived from the normal distribu-
tion. This means that it is difficult to obtain confidence
intervals of parameter estimates from cointegrated mod-
els, short of bootstrapping. It also means that restrictions
are tested using cointegration tests as follows. For exam-
ple, to test the restriction g = 0 Eq. (2) is estimated twice;
with and without Pit/Cit. If the model is cointegrated with
this variable, but ceases to be so without it, the restriction
may be rejected. If the p-value of the cointegration test
remains unchanged, the restriction may be accepted. But
if this p-value decreases the restriction may be rejected
because it strengthens the degree of cointegration.

Appendix 1 also shows that the coefficients of spatial
lagged dependent variables, such as k, are consistently esti-
mated by OLS when the data are nonstationary. This too fol-
lows from super-consistency which vitiates the feedback
from neighbors on each other. Tests for spatial cointegration
may be carried out as described in the previous paragraph.
For example, to test the restriction k = 0 Eq. (2) is estimated
with and without the spatial lagged dependent variable.

If Eq. (2) is cointegrated the residuals are generally
autocorrelated and mean-reverting, and the roots of the
autocorrelation model are less than one by definition.
The residuals may also be spatially autocorrelated in which
case uit is correlated with ~uit . Spatial autocorrelation
reduces efficiency but does not induce bias or inconsis-
tency in the parameters estimates. However, more efficient
estimates of the parameters may by obtained by estimat-
ing Eq. (2) by SUR (seemingly unrelated regression).

We use the group augmented Dickey Fuller statistic
(GADF), the group Phillips-Perron statistic (GPP), and the
group-rho statistic suggested by Pedroni (2004) to test
whether the estimated residuals are nonstationary. Note
that GADF is the counterpart of the IPS statistic for testing
hypotheses about panel cointegration. We also use the
panel error correction Ps cointegration test statistic (PEC)
due to Westerlund (2007), where Ps is the t-statistic on
the estimate of q in the panel error correction model:
D ln Bit ¼ wi þ qûit�1 þ nD ln Bit�1 þ fD ln ~Bit þ v it ð4Þ

The Pedroni test statistics have been transformed into
the standard normal variable z:

zk ¼
ffiffiffiffi
N
p
½Sk � EðSkÞ�
sdðSkÞ

) Nð0;1Þ ð5Þ

where Sk labels the particular statistic (such as IPS and
GADF) and E(S) and sd(S) are the expected value and stan-
dard deviation of S obtained by Monte Carlo simulation
under the assumption that the panel units are
independent.

The null hypotheses tested by IPS and GADF etc are that
the panel data and panel residuals are nonstationary, i.e.
d = 1 where d denotes the order of differencing that makes
the data or residuals stationary. An alternative approach,
originally suggested by Kwiatkowski et al. (1992) (KPSS)
and Shin (1994) is to test the null hypothesis that the data
and residuals are stationary, i.e. d = 0. Note that rejection of
the former (non-stationarity) does not necessarily imply
acceptance of the latter (just as failing to prove guilt does
not prove innocence). Hadri (2000) has extended the KPSS
statistic to test the null hypothesis that the panel data are
stationary. However, there is no counterpart to Shin (1994)
for testing the null hypothesis of panel cointegration. Like
IPS, Hadri assumes that the panel units are independent.

As mentioned the critical values of the IPS and GADF or
group-rho statistics are derived under the assumption that
the panel units are independent. Baltagi et al. (2007) report
that panel unit root tests, such as IPS, which ignore spatial
autocorrelation are reasonably sized provided that the spa-
tial autocorrelation coefficient is sufficiently small (<0.4).
However, they did not calculate critical values for unit root
tests in spatially dependent panel data, nor did they inves-
tigate critical values for spatial panel cointegration tests
such as GADF. To investigate the sensitivity of the IPS
and GADF statistics to spatial dependence we report in
Appendix 2 the results of a Monte Carlo simulation exer-
cise in which spatial dependence is induced by a spatial
lag.

Three conclusions follow from this exercise. First, the
IPS and GADF critical values are close to their spatial coun-
terparts provided the SAR coefficient is not too large. Sec-
ond, if N and T are relatively small the IPS test statistic
under-rejects the null unit root hypothesis i.e. IPS is too
conservative. Third, it is easier to refute the null hypothesis
(no cointegration) when the data are spatially dependent.

3. The data

3.1. House prices

Since the early 1970s Israel’s Central Bureau of Statistics
(CBS) has published house price indices for nine regions
(see Fig. 1). These indices are constructed from transac-
tions data, which are also used by CBS to construct a hedo-
nic price index for the country as a whole. The spatial panel
data (1987–2010) are plotted in Fig. 2. They show, as
expected, that housing is systematically more expensive
in the core than in the periphery and that the regional
ranking of house prices has remained quite stable over



Fig. 1. Map of Israeli regions.
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time. During the 1990s immigration from the former USSR
increased Israel’s population by about 20% causing real
house prices to double. House prices peaked in 1999–
2000 after which they fell by about 30%. The resurgence
in house prices since 2007 largely resulted from the Bank
of Israel’s decision to cut interest rates following the Sub-
prime Crisis. Since we have explored these data before
(Beenstock and Felsenstein, 2010) we focus on housing
construction.

3.2. Housing construction

CBS publishes data on housing starts, used to measure
B, and completions by units and square meters. It also pub-
lishes data on housing under construction (U). In what fol-
lows we use housing starts measured in square meters. We
have used these data to construct housing starts for the
nine regions for which house prices are available. These
data are plotted in Fig. 3, which shows that with the possi-
ble exception of the Krayot area (near Haifa) construction
has had a positive trend in all regions. Krayot has system-
atically had the least number of housing starts, whereas Tel
Aviv tended to have the most. The ‘‘spaghetti’’ effect in
Fig. 3 results from the fact that, in contrast to house prices,
the regional league table in housing construction has var-
ied over time.

Fig. 4 plots MOH-initiated housing starts in the nine
regions, which fall into two distinct groups. The first com-
prises North, South, Center and Jerusalem where most of
MOH starts have been concentrated (especially South). In
the second group there has been relatively little MOH
activity. This largely reflects the fact that public (ILA) land



Fig. 2. Regional house prices (1991 prices).

Fig. 3. Housing starts (1000’s m2).
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reserves in these regions are low. On the whole the govern-
ment has been responsive to market forces; it has sold
more land when house prices are more expensive. For
example, following the wave of mass immigration from
the former USSR in the early 1990s, the government
released land for housing. This explains the spike in 1992
in Fig. 4 (especially in the South).
7 If Y and X are difference stationary and Z is stationary, omitting Z from a
regression of Y on X cannot asymptotically affect the regression coefficient.
3.3. Construction costs

Unfortunately data on building costs (C) are only avail-
able nationally. This may not matter for materials whose
prices are likely to be similar across the country (especially
a small country), but it may matter for labor costs. Gyourko
and Saiz (2006) report that construction costs vary widely
in the United States. However, in a small country, such as
Israel, this issue is likely to be less important. We assume,
force majeure, that regional building costs have a national
component, a fixed region specific component (ci) and a
random component (sit), i.e. Cit = ci + Ct + sit in which case
ci is absorbed into the specific effect in Eq. (2), sit is
absorbed into the residual, and Ct replaces Cit in Eq. (2). If
the data were stationary the latter would induce attenua-
tion bias in the parameter estimates of Eq. (2). However,
this problem is mitigated if the data are nonstationary
due to super-consistency.7



Fig. 4. Public sector housing starts (1000’s m2).
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The price of land should also be a component of C. In
common with most countries there are no systematic data
on land prices in Israel. If relative land prices remained
unchanged the unobserved effect of land prices would be
picked-up by the fixed effect in Eq. (2), and estimates of
the supply elasticities in Eq. (2) would be consistent. If rel-
ative land prices varied directly with house prices these
elasticities would be under-estimated. However, if relative
land prices happened to be stationary these estimates
would be consistent since an omitted variable that is sta-
tionary is asymptotically independent of house prices,
which are nonstationary.

Although there are no data on land prices for the nine
regions in the study, the auction prices of the winning ten-
ders for ILA residential building rights are published. We
have used these data to construct regional land price indi-
ces for six regions during 1996–2012, which are plotted in
Fig. 5. These data suggest that relative regional land prices
have remained reasonably stable over time. In fact these
data are cointegrated suggesting that they share a common
stochastic trend.8 Therefore, the absence of systematic data
on land prices might not, in practice, be serious since
changes in relative land prices are stationary.
3.4. Panel unit root tests

Panel unit root tests for logarithms of these variables
are reported in Table 1. According to IPS one may reject
the null hypothesis that the log level of construction (hous-
ing starts measured in square meters) is nonstationary
since z-IPS (�2.4) is smaller than its critical value of
�1.96. This is surprising since Fig. 1.1 shows that the mean
level of construction has, on the whole, been growing over
time. By contrast Hadri’s LM test clearly rejects the
hypothesis that these data are stationary, since z-LMH
8 The Dickey Fuller statistic for the regression residuals of the logarithms
of land prices between each other is �4.14, suggesting that the data in Fig. 5
are cointegrated.
(3.67) exceeds 1.96. Ideally these tests should be mutually
consistent.9 However, in the case of construction they are in
apparent conflict. The same apparent conflict arises, not sur-
prisingly, in the case of housing completions. Since the log
first differences of housing starts and completions are sta-
tionary according to LMH and IPS, we consider these housing
construction data to be difference stationary. This conflict is
less pronounced in the case of MOH construction since z-
LMH is marginally smaller than its critical value. However,
we also assume that MOH construction is difference station-
ary, which means that lnZ � I(1).

No such conflict arises in the case of house prices since
according to the IPS statistic we cannot reject the null
hypothesis that d = 1 and according to the LMH statistic
we can reject the null hypothesis that d = 0. Since both
IPS and LMH concur that house prices are stationary in first
differences, we assume that they are difference stationary.

Table 1 also includes housing under active construction
(U, also measured in 1000s of square meters). The relation-
ship between this variable and starts (S) and completions
(F) is:
Ut ¼ Ut�1 þ St�1 � Ft�1 ð6Þ

Since S and F are by definition cointegrated I(1) vari-
ables, Eq.(6) implies that DU � I(0) in which case U � I(1),
as indicated in Table 1 by the LMH test statistic, but not
(marginally) by the IPS statistic. Therefore, lnS and S and
lnF and F are I(1) variables.

The test statistics in Table 1 ignore spatial dependence
in the data. The nearest case in Table A1 (N = T = 25) sug-
gests that these test statistics are unlikely to be distorted
by spatial dependence, although the IPS statistic is slightly
too permissive in that it incorrectly rejects the null hypoth-
esis that d = 1.
9 Strictly speaking, a time series is nonstationary when d P ½. If d = 0.4
LMH will reject the null of d = 0 and IPS will reject the null of d = 1. In a
fractional unit root context the results of the two tests may be compatible.
See Beenstock et al. (forthcoming).



Fig. 5. Relative land prices by district.

Table 1
Panel unit root tests: 1987–2010.

z-IPS z-LMH

d = 0 d = 1 d = 0 d = 1

House prices �1.53 �3.96 9.76 1.65
Housing starts �2.40 �8.41 3.67 �0.86
Completions �2.61 �7.78 4.42 1.17
Starts (MOH) �3.43 �5.92 1.92 0.18
Housing under construction (U) �1.7 �5.61 3.07 -0.48

Notes: z-IPS is the z statistic based on Im et al. (2003), and z-LMH is based
on Hadri (2000). Two augmentations or lag truncations are specified. Data
in logarithms (except housing under construction), and d denotes the
order of differencing.
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4. Results

4.1. Regional housing starts

We begin by estimating Eq. (2) under the assumption
that each region is an island unto itself. Hence, in Eq. (2)
we impose the restrictions / = k = p = c = 0. This specifica-
tion (standard model) assumes that each region in the
panel behaves as it might have done had regional depen-
dence been ignored. The first three restrictions assume
that spatial spillovers do not matter, while the latter
assumes that local construction is independent of national
construction. Subsequently, we relax the latter restriction
and estimate c. We refer to this as the ‘‘national spillover
model’’. Thereafter, we relax the spatial restrictions, but
retain the restriction c = 0 (the spatial spillover model).
Finally, all restrictions are relaxed (the general spillover
model).

There are several possible outcomes. First, the standard
model is supported by the data, and spatial and national
spillovers are empirically unimportant. Second, the stan-
dard model is supported by the data but spillover models
(national and/or spatial) are empirically superior. Third,
the standard model is not supported by the data but the
models with spillover are supported by the data. Finally,
none of the models are supported by the data. We show
that the general spillover model is supported by the data,
whereas the standard model and the national spillover
model are not supported by the data.

We estimate Eq. (2) with regional fixed effects by SUR.
The latter allows the residuals (uit) to be correlated, but
not necessarily spatially correlated. Since the data are non-
stationary the parameter estimates have non-standard dis-
tributions, in which case t-statistics do not indicate
statistical significance unless the covariates happen to be
strictly exogenous, which is not the case here. We there-
fore test for statistical significance by dropping variables
from the model. If this induces cointegration failure we
conclude that the variable or variables concerned are sta-
tistically significant. We use group cointegration test sta-
tistics (Pedroni, 2004) designed for panel data, which
allow for heterogeneity in the autoregressive behavior of
the residuals (uit).

We use a spatial weighting matrix that takes account of
both relative size and distance. Hence:

wij ¼
POPj

POPi þ POPj
� 1

dij

where POP denotes the sample-mean population in the
data, and dij is the Euclidean distance between i and j.
The spatial weights are asymmetric (wij – wji) according
to relative population sizes, so that a big region affects its
small neighbor by more than does a small region affect
its big neighbor. Apart from this, the effect of more distant
neighbors is smaller. We follow the convention of normal-
izing the row sum of weights to one by dividing wij by its
mean for i.

Results for housing starts are reported in Table 2. Model
1 refers to the standard model with no spatial or national
spillovers. The estimated price elasticity of supply is
0.247 and the estimate of l implies that MOH initiated
construction increases total construction, and that crowd-



Table 2
Estimates of Eq. (2): housing starts (logarithms).

Model g c l / k p GADF GPP PEC

1 0.247 1.488 �3.00 �3.61 �5.65
2 0.428 �0.031 1.321 �3.14 �3.56 �3.06
3 0.355 1.245 �0.257 0.651 �0.391 �3.45 �3.94 �4.52
4 0.312 0.495 1.098 �0.594 0.584 �0.433 �3.46 �3.87 �3.94
5 0.305 0.470 0.967 �0.548 0.515 �3.43 �3.82 �3.83
6 0.258 0.668 �0.716 0.730 �3.576 �4.010 �5.37
7 0.315 0.877 �0.265 �3.45 �4.03

Notes: Estimation by SUR with regional fixed effects. GADF: group (1st order) ADF panel cointegration z-statistic. GPP: group (1st order) Phillips-Perron
panel cointegration z-statistic. Their one-sided critical value is �1.65 at p = 0.05. PEC: Panel error correction statistic (Ps in Westerlund, 2007).
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ing-in occurs according to Eq. (1) where the share of MOH
starts is less than 33%. Model 1 is cointegrated according to
all three panel cointegration test statistics. Recall that t-
statistics are not reported because, as explained, the
parameter estimates have non-standard distributions.

Model 2 refer to the national spillover model. The local
price elasticity increases from 0.247 in model 1 to 0.428
and the national price elasticity is slightly negative.
Although there is a slight improvement in the GADF statis-
tic, the GPP and PEC cointegration test statistics deterio-
rate, suggesting that model 1 is preferable to model 2.
Model 3 refers to the spatial spillover model. The local
price elasticity is 0.355 and the spatial price elasticity is
�0.257. This spatial elasticity implies that housing con-
struction in neighboring regions and local construction
are close but imperfect substitutes. Indeed, what matters
is largely the relative price between local house prices
and house prices in neighboring regions. The same phe-
nomenon applies to MOH building incentives; the local
effect is positive (1.245) but the spatial effect is negative
(�0.391). Therefore, incentives granted to neighboring
regions induce contractors to transfer their business from
the locality to its neighbors. Model 3 includes a spatial
lagged dependent variable (0.651) implying positive spill-
over from neighboring construction to local construction.
It also implies that the unconditional elasticities are 2.86
times larger than their conditional counterparts. The GADF
and GPP statistics of model 3 improve on their counter-
parts in model 1. Recall that marginal improvements in z
become progressively harder as z becomes more negative.
However, the PEC statistic is weaker.

Model 4 specifies all the variables in Eq. (2) and serves
as an unrestricted specification of the general spillover
model. The local price elasticity of supply in model 1 is
0.312, the national price elasticity is 0.495, and the spatial
price elasticity is �0.594. The latter shows that spatial sub-
stitution in construction is strong, while the former shows
that national and local construction are complements. The
sum10 of these elasticities (0.213) is similar to the local elas-
ticity in model 1. The estimate of l (1.098) means that MOH
construction crowds-in private construction provided the
MOH share in starts is less than 9%. The spatial lag coeffi-
cient (k) is slightly larger than a half, so that the uncondi-
tional elasticities are slightly less than twice as large as
10 The total elasticities are larger than this sum because of the spatial
lagged dependent variable. The total elasticity is calculated in the simu-
lations below.
their conditional counterparts. Finally because p is negative,
MOH construction has a negative spatial spillover effect. The
cointegration test statistics (GADF and GPP) greatly exceed
their critical values, but are similar to their counterparts in
model 3. Since the only difference between models 3 and
4 relates to national profitability (c), this suggests that c is
not statistically significant.

Table 2 reports a number of restricted models, which
indicate that the group panel cointegration test statistics
are insensitive to the various restrictions tested. Model 6
omits building incentives granted by the Ministry of Hous-
ing; the cointegration test statistics hardly change, sug-
gesting that these incentives do not significantly affect
construction. Finally, Model 7 differs from other spatial
models in that / is positive and k is negative; local con-
struction varies directly with prices nearby, but there is
negative spillover between local and nearby construction.

Since all the models in Table 2 are panel cointegrated,
we are somewhat spoiled for choice. But some are more
cointegrated than others in the sense that their p-values
are smaller, especially models 3–7, which are spatial.
Although we cannot rule out the standard model in favor
of models with spatial spillover, the latter models are more
statistically significant because they have smaller p-values.

The panel cointegration test statistics reported in
Table 2 have been calculated under the assumption that
the panel data are independent. The nearest case to N = 9
and T = 23 in Table A2 (N = 25 T = 20) indicates that the
tests in Table 2 are likely to be conservative, i.e. the null
hypothesis in Eq. (2) is rejected too frequently.

Fig. 6 plots the estimated residuals of model 4 in Table 2.
This spaghetti graph indicates that the residuals, on the
whole, mean-revert to zero. However, the residuals for
Haifa are an exception, as indicated by the (1st order)
ADF and PP statistics reported in Table 3. Table 3 also
shows that there is widespread regional heterogeneity in
these mean-reverting tendencies; it is strongest in Sharon
and the South and it is weakest in Haifa and the North.
Table 3 further shows widespread heterogeneity in regio-
nal fixed effects. The largest fixed effect is, not surprisingly,
in the North where the population is largest, and it is
smallest in Krayot where the population is smallest.
4.2. Housing completions

We ‘‘spatialize’’ the multiple cointegration model
between starts and completions suggested by Bar Nathan
et al. (1998), which ensures that starts are eventually com-



Fig. 6. Residuals of model 4.

Table 3
Regional heterogeneity (Model 4).

Fixed Effect ADF PP

Jerusalem 0.027 �2.95 �3.234
Haifa �0.728 �1.061 �1.700
Tel-Aviv �0.648 �2.007 �2.560
Dan �0.262 �2.561 �2.840
Center 0.972 �1.524 �2.553
South 0.369 �3.081 �2.615
Sharon 0.329 �3.171 �2.673
North 1.349 �1.112 �1.799
Krayot �1.410 �1.961 �3.100
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pleted. The basic hypothesis is that completions (F) vary
directly with building under construction (U) and starts
(B). Contractors use buildings under construction as a buf-
fer which lengthens when business is bad and shortens
when business is good. This means that contractors slow
down completion rates when business is slack and acceler-
ate them when business is favorable. Since regional com-
pletion rates may have a spatial dimension our basic
specification for completions is:

Fit ¼ dUit þ sBit þx~Fit þ 1~Uit þ m~Bit þwit ð7Þ

Since all the variables in Eq. (7) are I(1), panel cointe-
gration requires that w � I(0). If completion rates increase
when construction is more profitable, Pit/Cit may be speci-
fied in Eq. (7). However, this effect may already be cap-
tured by starts. Notice that there is no intercept term in
Eq. (7) because F must equal zero when B = U = 0.

Model 1 in Table 4 is an unrestricted model with spatial
spillovers. It states that contractors complete annually 43%
of outstanding buildings under construction, and that cur-
rent completions vary directly with starts. For every 10
square meters of starts there is an additional 1.7 square
meters of completions. The spatial lag coefficient is 0.504,
implying that completions increase with completions in
neighboring regions. There are negative spatial spillovers
from buildings under construction and starts, implying
that contractors substitute completions between regions.
The cointegration test statistics are highly significant.
Indeed, their p-values are even smaller than their counter-
parts in Table 2.

Model 2 shows that dropping the spatial variables
makes no difference to the cointegration test statistics.
Therefore, these spatial variables are not statistically sig-
nificant. By contrast, in Table 2 dropping spatial variables
raised the p-values of the cointegration tests. We also car-
ried out some further tests. For example, in model 2 com-
pletions vary directly with local house prices, suggesting
that contractors accelerate completions when building is
more profitable. However, the cointegration test statistics
do not change. Model 3 is identical to model 2 except it
used private housing starts rather than total housing starts.
The effect of private housing starts on completions is
greater than total starts, however, there is a slight deterio-
ration in the panel cointegration test statistics.

The completion lag implied by model 2 is represented
in Table 5. It follows a cohort of 100 additional starts
occurring in year 0. What matters is not the completion
of these particular houses, but the completion of housing
as a whole when contractors use housing under construc-
tion as a buffer. It is for this reason that there is an



Table 4
The completions model.

Model d i x f t GADF GPP PEC

1 0.432 0.169 0.504 �0.074 �0.226 �4.79 �5.16 �9.28
2 0.432 0.168 �4.73 �5.12 �10.9
3 0.401 0.276a �4.59 �4.99

Notes: See notes to Table 2. Note a: private housing starts.

Table 5
The distribution of completions.

Year 0 1 2 3 4 5

Completions 16.8 35.9 20.4 11.6 6.6 4.0
Completion Rate 16.8 52.7 73.1 84.7 91.3 95.3
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immediate effect on completions in year 0; these starts
induce contractors to complete housing already under con-
struction more rapidly. Completions peak in year1 by
which the completions rate is 52.7%. Subsequently, the
completion rate increases towards 100%. The mean lag is
2.7 years.

4.3. Model properties

To illustrate the properties of the multiple cointegration
housing construction model we use model 4 for housing
starts from Table 2 and model 2 for housing completions
from Table 4. There are spatial spillovers in the former
but not in the latter. The choice is made for reasons of par-
simony and the p-values of the panel cointegration tests.
The model is completed by using Eq. (6) to relate building
under construction to starts and completions.

We set up a base-run by carrying out a full dynamic
simulation (FDS) of the model over 1988–2010 in which
the state variables, such as house prices and MOH starts,
assume their values as in the data. Because the model con-
tains levels of variables and their logarithms the model is
nonlinear and its solutions are base dependent. We calcu-
late impulse responses by perturbing the state variables
and by comparing the perturbed FDS to the base run. In
doing so, we distinguish between local, spatial and
national perturbations. Due to the presence of spatial
effects in the housing starts model, the impulse responses
propagate over space as well as time.

The model is dynamic because of the lag between starts
and completions. Since the equations for starts and com-
pletions refer to their nonstationary components, and do
not embody short-term dynamics, the model refers to
Table 6
model simulations: housing starts (% change in square meters).

Tel Aviv Jerusalem Haifa Center

A 0.35 0.30 0.45 0.19
B 2.27 �0.83 �0.66 �0.83
C �4.35 �3.08 �3.50 �2.74

A: MOH housing starts increased in North by 200,000 square meters.
B: House prices in Tel Aviv increased by 10%.
C: Building costs increased by 10%.
trend, or equilibrium behavior. A complete dynamic
account would have to include error correction models
for starts and completions. In the absence of error correc-
tion, the simulated impulse responses therefore refer to
equilibrium responses, and their dynamics are entirely
induced by the lag between completions and starts.

In the first simulation we increase MOH housing starts
temporarily in the North in 1995 by 200,000 square
meters. This is an example of a local perturbation for the
North. However, from the point of view of neighboring
regions this is a spatial perturbation. In the interest of
space, we focus on the response of housing starts (Table 6)
and housing stocks (Table 7). The former lasts for one per-
iod only because the shock lasts for one period, and
because the cointegrating vector for starts contains no
dynamics. The latter, as mentioned, is dynamic because
of the relationship between starts and completions. Table 7
reports the response of housing stocks up to 7 years after
the shock.

The direct effect on housing starts in the North is
185,327 square meters (8.94%). Housing starts increase
by less than 200,000 square meters because MOH starts
crowd out private starts (simulation A). The rate of crowd-
ing out in the North in 1995 was 7.3%; a square meter of
MOH starts crowds out 0.073 square meters of private
starts. Through spatial lag effects housing starts increase
in other regions. There are two types of spatial lag effect.
First, there are spatial spillovers from housing starts. Sec-
ond, there are spatial spillovers from MOH starts. The for-
mer spatial spillovers propagate across the regions of Israel
through the spatial lagged dependent variable. Spatial
spillovers for housing starts are all positive and range from
0.19% to 0.66%.

Because the perturbation is assumed to be temporary,
housing starts eventually revert to their baseline solution.
However, housing stocks are permanently raised, espe-
cially in the North. It takes about 4 years for the comple-
tion – starts process to dissipate after which housing
stocks settle down to their new equilibrium. By implica-
tion, completions and housing-under-construction revert
to their base-run solutions. By year 7 after the shock, the
Dan Sharon Krayot North South

0.29 0.67 0.41 8.94 0.28
�1.5 �1.05 �0.68 �0.98 �0.73
�4.37 �3.84 �3.93 �3.77 �2.84



Table 7
Model simulations: housing stock (% change: square meters).

Lag Tel Aviv Jerusalem Haifa Center Dan Sharon Krayot North South

A 1 0.002 .005 .004 .004 .002 .011 .003 0.16 .004
3 0.007 .012 .009 .010 .006 .025 .007 0.37 .010
5 0.008 .013 .011 .012 .007 .029 .008 0.42 .012
7 0.009 .014 .011 .012 .007 .030 .008 0.43 .012

B 1 0.019 �.014 �.006 �.019 �.003 �.017 �.004 �.018 �.012
3 0.046 �.032 �.014 �.045 �.029 �.039 �.011 �.040 �.026
5 0.055 �.038 �.017 �.052 �.035 �.046 �.013 �.046 �.031
7 0.057 �.038 �.018 �.052 �.036 �.047 �.014 �.046 �.032

C 1 �.037 �.052 �.031 �.062 �.035 �.061 �.025 �.062 �.045
3 �.088 �.120 �.074 �.147 �.085 �.144 �.062 �.155 �.104
5 �.105 �.139 �.089 �.171 �.105 �.167 �.076 �.179 �.122
7 �.108 �.141 �.093 �.171 �.106 �.171 �.080 �.180 �.125
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housing stock in the North increases by 0.43%, but most of
this increase has already occurred within 3 years. Housing
stocks gradually increase in other regions because of the
spatial spillovers in starts.

Next (simulation B), we simulate a temporary increase
of house price (10% in 1995) in the Tel Aviv region, which
raises housing starts by 2.27% in Tel Aviv. This increase
comes at the expense of housing starts elsewhere. This
happens because there is spatial substitution in housing
construction; there is less incentive to build outside Tel
Aviv. However, this effect is mitigated by the spatial lag
in housing starts. The decreases in housing starts else-
where range from 0.68% to 1.5%. Not surprisingly, these
decreases are strongest in the vicinity of Tel Aviv, espe-
cially Dan and Sharon. The spatial spillovers are large rela-
tive to their counterparts in the previous simulation (A). As
in simulation A, it takes about 5 years for housing starts to
find their way into the housing stock.

The responses in Table 6 for simulations A and B depend
on where they occur because as mentioned in Section 2.4
the model is spatially state-dependent. For example, the
price elasticity of supply in Tel Aviv is 0.227 according to
simulation B in Table 6, which is less than the estimate
of g = 0.312 (Model 4 in Table 2). This results from negative
spatial dynamics that are clearly featured in Table 6.
Because the spatial lagged dependent variable (k = 0.584)
is positive and construction decreases elsewhere, the price
elasticity of supply is reduced through negative spatial
spillover. Since this effect depends on the spatial weights
for Tel Aviv, it must be the case that increasing house
prices in e.g. Jerusalem has a different effect on construc-
tion in Jerusalem than does increasing house prices in Tel
Aviv have on construction in Tel Aviv. Also the spatial
propagation from Jerusalem to the rest of the country is
different from the spatial propagation in Table 6.

Finally (simulation C), we simulate a temporary
increase in national construction costs in 1995. National
construction costs affect starts in three ways. First, since
local construction costs depend on national construction
costs, local profitability in construction decreases, which
adversely affects local construction in all regions. Second,
if construction profitability decreases in neighboring
regions, this increases local construction through the
spatial lag coefficient. Third, construction profitability
decreases nationally, which adversely affects local
construction since local and national construction are com-
plementary. The fist and third effects are negative and the
second effect is positive. However, the combined effect is
negative as may be clearly seen in the simulation.

The adverse effects of construction costs on housing
starts range from 2.74% in the Center and 4.34% in Tel Aviv.
This heterogeneity stems from the spatial lag structure of
the model, and because the spatial weights are asymmetric
and vary. The spatial weights take account of relative size
and distance. Therefore, the spatial effect of e.g. Tel Aviv
on Jerusalem does not equal the effect of Jerusalem on
Tel Aviv, and the effect of Jerusalem on Haifa differs from
the effect of Jerusalem on Tel Aviv. As in simulations A
and B it takes about 5 years for the housing stocks to
adjust.
5. Conclusions

Using recent methodological advances in the economet-
ric analysis of nonstationary spatial panel data and spatial
panel data for Israel we have investigated the determi-
nants of regional housing construction. Our main result is
that the econometric specification of regional housing con-
struction is not simply the standard national model
applied regionally. This standard model assumes that each
region is an island unto itself. Indeed, the standard model
is not supported by the data whereas the opposite applies
when this model is generalized to include spillovers that
are spatial and national.

We show that although housing starts vary directly
with profitability as measured by house prices relative to
building costs, they vary inversely with profitability in
neighboring regions, i.e. there is substantial spatial substi-
tution in housing construction. The local price elasticity of
supply is about 0.3, whereas the spatial elasticity is about
�0.6 this substitution effect suggests that contractors have
local building preferences since they regard neighboring
regions as close substitutes but not more distant regions.

Whereas neighboring regions are substitutes, we find
that local and national construction are complements. If
national profitability increases, this raises local construc-
tion, as well as national construction. The local elasticity
of supply with respect to national house prices is about
0.5. The overall conditional price elasticity of supply is



11 Matters are different if N is not fixed (Baltagi, 2008, p. 299). Notice that
Baltagi’s dNT tends to zero when N is fixed but T tends to infinity.
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about 0.25, but its unconditional counterpart is about 0.5,
i.e. a general increase in house prices of 10% raises con-
struction across the country as a whole by about 5%. This
elasticity is somewhat larger than the one estimated by
Bar Nathan et al. (1998) at 0.31.

This elasticity is small. Using results from Beenstock
and Felsenstein (2010) for regional house prices, popula-
tion growth (2.2% per year) and income growth increased
house prices by about 3% per year. Since 1967 the secular
rate of growth in real house prices in Israel has been about
2% per year. Therefore the price elasticity of supply has
reduced the rate of growth of house prices by about 1%
per year (equal to 0.5 � 2%). Alternatively, because the
price elasticity of supply is small, housing supply has failed
to keep up with demand, which is why real house prices
have been increasing. However, they have increased by
1% less per year than would otherwise have been the case.

Apart from the spatial substitution effect mentioned
above, a further spatial effect is captured by the spatial
lagged dependent variable in the model for housing starts.
The estimated spatial lag coefficient implies that the local
elasticity of construction with respect to construction in
neighboring regions is about 0.6, suggesting that local con-
struction and neighboring construction are complemen-
tary. We reconcile this complementarity and the
substitution effect as follows. Contractors may regard
neighboring regions as substitutes, but there are favorable
synergies in regional construction. The cost of building in a
region varies inversely with construction in its neighbors
due, for example, to cost sharing in the use of capital
equipment as well as perhaps in the use of labor. These
spatial effects emphasize the difference between spatial
and national modeling of housing supply.

Because regions are spatially related to each other dif-
ferently, the spatial propagation of shocks depends on
where they occur. For example, a house price shock in
Tel Aviv has a different effect on housing construction in
Tel Aviv and elsewhere, than would an identical house
price shock in Jerusalem have on construction in Jerusalem
and elsewhere. Spatial propagation is stronger the more
the spatial unit is connected to its neighbors.

In Israel the Ministry of Housing and Construction does
not directly engage in housing construction. Instead, it auc-
tions off land for house building at preferential terms. We
show that such building tends to crowd-in housing con-
struction. The financial perks that accompany these auc-
tions help constructors engage in other housing
construction, suggesting that constructors are capital con-
strained. Therefore, housing construction initiated by MOH
does not tend to crowd-out other housing construction.
However, there is a spatial effect insofar as auctions in
neighboring regions reduce local construction. Contractors
will build less in a locality if MOH is initiating housing con-
struction among its neighbors. This result is consistent
with our finding that local and neighboring construction
are substitutes.

We show that the lag between completions and starts
varies inversely with the number of starts. This is consis-
tent with the hypothesis that contractors use building
under-construction as a buffer to smooth construction.
They slow down the completion rate when business is
quiet and increase it when business picks-up. Unlike in
the case of housing starts, we find little in the way of spa-
tial spillovers in housing completions. However, there may
be a spatial lag in housing under-construction so that local
completions vary directly with housing under-construc-
tion in neighboring regions. This effect is consistent with
our previous finding that local and neighboring starts are
complementary.

We use the model to simulate impulse responses across
space and over time. Region specific shocks propagate at
three levels. They propagate over time within regions. They
propagate between regions. Finally, they propagate
between regions over time. We report impulse responses
for MOH initiated housing, house prices and building costs.
In doing so, we distinguish between local and nation-wide
shocks. The reported impulse responses express the rich-
ness of the spatial specification of the model.

Finally, we draw attention to a number of econometric
issues. Since the panel data are nonstationary we have
used panel cointegration to test hypotheses about housing
construction. It is assumed in standard panel unit root and
panel cointegration tests that the units in the panel are
independent. This assumption is naturally violated in spa-
tial panel data. We have carried out Monte Carlo simula-
tions of the sensitivity of these tests to spatial
dependence between panel units. These simulations show
that provided the spatial dependence is not too pro-
nounced the critical values for standard panel unit root
and cointegration tests are reasonably reliable.
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Appendix A. Identification in nonstationary spatial
panel data

This appendix shows that the principles of econometric
identification for nonstationary data are different to when
the data are stationary. Stock (1987) was the first to show
that OLS parameter estimates in cointegrated models are
super-consistent; they converge faster than root-T to their
population counterparts. Due to super-consistency the
parameter estimates of cointegrating vectors are consis-
tent even if the variables in the model happen to be jointly
determined. This means that parameter estimates that
would not be consistent when the data are stationary are
consistent if the data are nonstationary, provided that the
variables concerned are cointegrated.

These properties carry over to nonstationary panel data
when N is fixed.11 In the present context this means that
OLS estimates of the price elasticity of supply of housing
construction and related parameters are consistent despite
the fact that the price of housing is jointly determined with
supply. Conveniently, the determinants of demand may be
ignored asymptotically when testing hypotheses about sup-
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ply, and the determinants of supply may be ignored when
testing hypotheses about demand.

These properties also carry over to the estimation of
SAR coefficients (of spatial lagged dependent variables).
In the case of stationary data OLS estimates of SAR coeffi-
cients are inconsistent because the outcomes of neighbors
are jointly determined. In this case, consistent estimation
of SAR coefficients is by ML or IV (Anselin, 1988). When
the data are nonstationary, however, OLS estimates of
SAR coefficients are super-consistent, as we show.

As is well known, IV and GMM are consistent estimators
but biased in finite samples. The same applies to the esti-
mation of cointegrating vectors which may be biased in
finite samples (Banerjee et al., 1993). However, the finite
sample bias in the latter is mitigated and in many cases
may be negligible, especially if the variance of the cointe-
grated residuals is small relative to the variance in the
data.

A.1. The identification problem

The model to be estimated is:

Bit ¼ bþ cPit þ dZs
it þ uit ð1Þ
Pit ¼ eþ fHit þ gZd
it þ v it ð2Þ
12 A random variable V has asymptotic order m when the first two
moments of T�mV are finite.

13 Textbooks such as Hamilton (1994) and Hendry (1995) follow Stock
(1987) in assuming this case. In practice, the presence of stochastic trends
in the data increases the degree of super-consistency.
Hit ¼ Hit�1 þ Sit�1 � Dit�1 ð3Þ

where Eq. (1) represents the equation for construction and
Eq. (2) is an inverted demand schedule for housing. Zd and
Zs are variables hypothesized to shift the demand and sup-
ply of housing. Without loss of generality the Z variables
are assumed to be independent of u and v. The main
parameters of interest are c and d. If the data are station-
ary, identification of c and d requires that Pit and uit be
independent. P is weakly exogenous if u is serially inde-
pendent and uncorrelated with v, because this makes Hit

and Pit independent of uit and vit. In what follows we
assume that these identifying restrictions do not apply,
so that Pit and uit are dependent.

A.2. Asymptotic orders in probability

Let the data generating process (DGP) for a difference
stationary variable such as P be a random walk with drift
d (subscript i is dropped for convenience) so that P has a
stochastic trend:

DPt ¼ dþ et ð4Þ

where e � iid(0, s) without loss of generality. The general
solution for P is:

Pt ¼ P0 þ dt þ ~et

~et ¼
Xt

s¼1

es
ð5Þ

P is (covariance) nonstationary because its first two
moments depend on time. Its mean is dt in Eq. (5), and
its variance (the variance of ~e) is st.
Suppose ut is a stationary random variable. The covari-
ance between P and u is obtained by multiplying Eq. (5) by
ut, summing, and dividing by T:

covðPuÞ ¼ 1
T

XT

t¼1
Ptut ¼

1
T

d
XT

t¼1
tut þ

XT

t¼1

~etut

 !
ð6Þ

This covariance has two components unless d = 0. The
asymptotic orders in probability12 of these component are
½ and 0 respectively because (see e.g. Hendry, 1995, p.
107; Hamilton, 1994, p. 485):

1
T

X
tut � OpðT1=2Þ ð7Þ

1
T

X
~etut � OpðT0Þ ð8Þ

Therefore the covariance of P and u is independent of T
if d = 0 and it increases with root-T otherwise.

The variances of nonstationary variables such as P
increase with T if d = 0 and with T2 otherwise, because
the square of P in Eq. (6) depends on t2. For similar reasons
covariances between difference stationary variables
increase with T2 because their products involve terms in t2.

A.3. Nonstationary panel data with fixed N

Since Zs and u are independent in Eq. (1) but P and u are
not, the OLS estimate of c equals:

ĉ ¼ c þ B ð9aÞ

B ¼
PN

i¼1covðPiuiÞPN
i¼1 varðPiÞ � covðPiZ

s
i Þ

2
=varðZs

i Þ
h i ð9bÞ

Because N is fixed the numerator of B increases with T½

but the denominator increases with T2. Therefore B tends
to zero with T�3/2 in which case the OLS estimate of c is
consistent. Indeed, it is super-consistent. If the variables
in the model happen to be driftless13 the numerator of B
does not depend on T, but the denominator increases with
T. Therefore B tends to zero with T�1, which is still super-
consistent.

A.4. Finite sample properties

To our knowledge the finite sample properties of panel
cointegrated vectors have not been investigated. As men-
tioned, Banerjee et al. (1993) carried out a Monte Carlo
analysis of the finite sample properties of cointegrating
vectors in which T ranges between 25 and 200. In general
they found that the final sample bias varies inversely with
the goodness-of-fit of the cointegrated model (i.e. inversely
with the variance of u and v in Eqs. (1) and (2)) and the
noise in the DGPs for house prices (the variance of e in
Eq. (4)) and construction, and it varies directly with the
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degree of error correction as measured by the AR coeffi-
cients of u and v. With T = 25 the finite sample bias ranges
between 2% and 30%.

In the case of panel cointegration we expect these finite
sample biases to be smaller because the bias is naturally
diversified away across the panel units.

A.5. Spatial lagged dependent variables

If spatial lagged dependent variables are specified in
Eqs. (1) and (2) and the data are difference stationary,
OLS estimates of SAR coefficients are consistent. To dem-
onstrate this, assume without loss of generality that
c = d = 0 and the model is:

Sit ¼ aþ lSnit þ eit ð10Þ

Snit ¼
XN

j–i

wijSjt

Sn is the spatial lagged dependent variable where wij are
spatial weights row-summed to 1. Without loss of general-
ity eit is assumed to be spatially and temporally indepen-
dent. OLS estimates of the SAR coefficient are not
consistent if the data are stationary, but matters are differ-
ent if they are nonstationary.

The OLS estimator of the SAR coefficient is:

l̂ ¼ lþ B ð11aÞ

B ¼
PN

i¼1covðSnieiÞPN
i¼1varðSniÞ

ð11bÞ

Eq. (10) is vectorized as:

St ¼ aiN þ lWSt þ et ð12Þ

where St and et are N-vectors and W denotes the spatial
connectivity matrix with elements wij. Solving Eq. (12)
and pre-multiplying the result by W expresses the N-vec-
tor of spatial lagged dependent variables in terms of et:

Snt ¼WðIN � lWÞ�1ðaiN þ etÞ ¼ CðaiN þ etÞ ð13Þ

where C is an N � N matrix with elements cij. Since the
data are difference stationary the counterpart to Eq. (5)
for Sit is:
Table A1
Critical Values for Spatial Panel Unit Roots (q-bar).

p h = 0 h = 0.04

1% 5% 10% 1%

N = 25 T = 10 0.32784 0.37372 0.39774 0.080784
T = 25 0.62973 0.66106 0.67869 0.62378
T = 50 0.80901 0.82487 0.8328 0.80444

N = 100 T = 10 0.4032 0.42749 0.440415 0.282691
T = 25 0.67981 0.69633 0.70417 0.67849
T = 50 0.83531 0.84227 0.84625 0.83116

N = 225 T = 10 0.430558 0.447017 0.455387 0.334974
T = 25 0.723823 0.731716 0.735764 0.707116
T = 50 0.850728 0.855552 0.858108 0.844629

Source: Beenstock and Felsenstein (2014). Based on 10,000 Monte Carlo trials as
Sit ¼ Si0 þ /it þ ~eit ð14Þ

The covariance between Sni and ei is obtained by substi-
tuting Eq. (14) into Eq. (13), multiplying the result by eit

and dividing the result by T:

covðSnieiÞ ¼
XN

i¼1

cij/j
1
T

XT

t¼1

teit þ ciicovðeieiÞ ð15Þ

which has asymptotic order T1/2 from Eq. (7). It has been
assumed that e and e are dependent within but not
between spatial units.

The variance of Sni is a spatially weighted average of the
variances of Sj and their covariances:

varðSniÞ ¼
XN

j¼1

c2
ijvarðSjÞ þ

XN

j¼1

XN

k¼1

cijcikcovðSjSkÞ ð16Þ

which has asymptotic order T2. According to Eqs. (15) and
(16) B has asymptotic order T�3/2 in which case OLS esti-
mates of SAR coefficient l are super-consistent.

Appendix B. Critical values for unit roots and
cointegration in spatial panel data

In Table A1 we report critical values for q-bar (the aver-
age value of qi) for the following data generating process
(DGP):

Yit ¼ ai þ qiY it�1 þ hi
~Yit þ eit

where hi induces spatial dependence in the Dickey-Fuller
regression. The DGP is a first order ARSAR (autoregressive
spatial autoregressive) model. When hi = 0 this is equiva-
lent to the IPS statistic expressed in terms of q-bar. When
q = 0 it is equivalent to the BFF test statistic (Beenstock
et al., 2012) for a spatial unit root. For example if
N = T = 25 the critical value of q-bar is 0.661 at p = 0.05. If
q̂ -bar exceeds this critical value, the null hypothesis of
nonstationarity cannot be rejected. If the panel data are
spatially dependent the critical value of q-bar decreases
slightly with h. Table A1 shows, as expected, that the crit-
ical value of q-bar varies directly with T and N.

Table A1 suggests that if N and T are relatively small the
IPS test statistic under-rejects the null hypothesis. There-
fore, the results in Table 1 are conservative as far as IPS
is concerned.
h = 0.2

5% 10% 1% 5% 10%

0.25047 0.30946 0.038446 0.20142 0.25643
0.6583 0.67584 0.61848 0.65185 0.6696
0.82129 0.82995 0.89654 0.9219 0.93263

0.35152 0.380629 0.238864 0.301863 0.329147
0.69338 0.70134 0.688289 0.704241 0.712053
0.83931 0.84327 0.950061 0.958088 0.961954

0.386037 0.405381 0.293023 0.335325 0.354018
0.717957 0.722995 0.706853 0.717675 0.723132
0.849745 0.852316 0.962538 0.967279 0.969512

suming qi = 1 and hi equals its tabulated value.



Table A2
Critical values for group rho statistic.

P h = 0 h = 0.04 h = 0.2

1% 5% 10% 1% 5% 10% 1% 5% 10%

N = 25 T = 10 0.3625 0.4101 0.4354 0.3653 0.4148 0.4398 0.4124 0.4661 0.4950
T = 15 0.5527 0.5867 0.6055 0.5557 0.5902 0.6091 0.6340 0.6824 0.7099
T = 20 0.6516 0.6817 0.6964 0.6568 0.6863 0.7010 0.7655 0.8142 0.8415

N = 100 T = 10 0.4481 0.4706 0.4827 0.4522 0.4734 0.4858 0.5341 0.5600 0.5743
T = 15 0.6151 0.6321 0.6409 0.6199 0.6365 0.6454 0.7654 0.7953 0.8100
T = 20 0.7025 0.7168 0.7236 0.7078 0.7230 0.7299 0.9260 0.9521 0.9680

N = 225 T = 10 0.4743 0.4898 0.4979 0.4777 0.4924 0.5003 0.5710 0.5899 0.6001
T = 15 0.6345 0.6455 0.6509 0.6389 0.6504 0.6558 0.8123 0.8331 0.9999
T = 20 0.7183 0.7281 0.7327 0.7256 0.7343 0.7395 0.9764 0.9946 0.9999

Source: Beenstock and Felsenstein (2014). Based on 10,000 Monte Carlo trials.
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We have used Monte Carlo simulation to calculate the
critical values for Pedroni’s group-rho statistic for various
values of T and N when there are two variables in the
model, i.e. the dependent variable (Y) and the independent
variable (X) are generated by ARSAR processes. Since the e’s
for Y and X are drawn independently these two variables
cannot be related, but they might be spuriously related.
The residuals from panel regressions of Yit on Xit must be
nonstationary in which case qi for these residuals is 1.
Results are reported in Table A2. If the data are not spa-
tially correlated (h = 0) the critical value of the group-rho
statistic is 0.5867 (N = 25, T = 15, p = 0.05). If the estimated
value of group-rho (1

N

PN
i q̂i) is smaller than 0.5867 we may

reject the null hypothesis that Y and X are not cointegrated.
The critical value of group-rho increases to 0.6824 when
h = 0.2. It is therefore easier to refute the null hypothesis
(no cointegration) when the data are spatially dependent.
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